校园春色亚洲色图_亚洲视频分类_中文字幕精品一区二区精品_麻豆一区区三区四区产品精品蜜桃

主頁 > 知識庫 > PyTorch一小時掌握之神經網絡分類篇

PyTorch一小時掌握之神經網絡分類篇

熱門標簽:鄭州智能外呼系統運營商 哈爾濱外呼系統代理商 電話機器人適用業務 佛山防封外呼系統收費 南昌辦理400電話怎么安裝 湛江電銷防封卡 徐州天音防封電銷卡 獲客智能電銷機器人 不錯的400電話辦理

概述

對于 MNIST 手寫數據集的具體介紹, 我們在 TensorFlow 中已經詳細描述過, 在這里就不多贅述. 有興趣的同學可以去看看之前的文章: https://www.jb51.net/article/222183.htm

在上一節的內容里, 我們用 PyTorch 實現了回歸任務, 在這一節里, 我們將使用 PyTorch 來解決分類任務.

導包

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

設置超參數

# 設置超參數
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

讀取數據

# 數據讀取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
    
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 調試輸出
print(example_targets)
print(example_data.shape)

輸出結果:
tensor([7, 6, 7, 5, 6, 7, 8, 1, 1, 2, 4, 1, 0, 8, 4, 4, 4, 9, 8, 1, 3, 3, 8, 6,
2, 7, 5, 1, 6, 5, 6, 2, 9, 2, 8, 4, 9, 4, 8, 6, 7, 7, 9, 8, 4, 9, 5, 3,
1, 0, 9, 1, 7, 3, 7, 0, 9, 2, 5, 1, 8, 9, 3, 7, 8, 4, 1, 9, 0, 3, 1, 2,
3, 6, 2, 9, 9, 0, 3, 8, 3, 0, 8, 8, 5, 3, 8, 2, 8, 5, 5, 7, 1, 5, 5, 1,
0, 9, 7, 5, 2, 0, 7, 6, 1, 2, 2, 7, 5, 4, 7, 3, 0, 6, 7, 5, 1, 7, 6, 7,
2, 1, 9, 1, 9, 2, 7, 6, 8, 8, 8, 4, 6, 0, 0, 2, 3, 0, 1, 7, 8, 7, 4, 1,
3, 8, 3, 5, 5, 9, 6, 0, 5, 3, 3, 9, 4, 0, 1, 9, 9, 1, 5, 6, 2, 0, 4, 7,
3, 5, 8, 8, 2, 5, 9, 5, 0, 7, 8, 9, 3, 8, 5, 3, 2, 4, 4, 6, 3, 0, 8, 2,
7, 0, 5, 2, 0, 6, 2, 6, 3, 6, 6, 7, 9, 3, 4, 1, 6, 2, 8, 4, 7, 7, 2, 7,
4, 2, 4, 9, 7, 7, 5, 9, 1, 3, 0, 4, 4, 8, 9, 6, 6, 5, 3, 3, 2, 3, 9, 1,
1, 4, 4, 8, 1, 5, 1, 8, 8, 0, 7, 5, 8, 4, 0, 0, 0, 6, 3, 0, 9, 0, 6, 6,
9, 8, 1, 2, 3, 7, 6, 1, 5, 9, 3, 9, 3, 2, 5, 9, 9, 5, 4, 9, 3, 9, 6, 0,
3, 3, 8, 3, 1, 4, 1, 4, 7, 3, 1, 6, 8, 4, 7, 7, 3, 3, 6, 1, 3, 2, 3, 5,
9, 9, 9, 2, 9, 0, 2, 7, 0, 7, 5, 0, 2, 6, 7, 3, 7, 1, 4, 6, 4, 0, 0, 3,
2, 1, 9, 3, 5, 5, 1, 6, 4, 7, 4, 6, 4, 4, 9, 7, 4, 1, 5, 4, 8, 7, 5, 9,
2, 9, 4, 0, 8, 7, 3, 4, 2, 7, 9, 4, 4, 0, 1, 4, 1, 2, 5, 2, 8, 5, 3, 9,
1, 3, 5, 1, 9, 5, 3, 6, 8, 1, 7, 9, 9, 9, 9, 9, 2, 3, 5, 1, 4, 2, 3, 1,
1, 3, 8, 2, 8, 1, 9, 2, 9, 0, 7, 3, 5, 8, 3, 7, 8, 5, 6, 4, 1, 9, 7, 1,
7, 1, 1, 8, 6, 7, 5, 6, 7, 4, 9, 5, 8, 6, 5, 6, 8, 4, 1, 0, 9, 1, 4, 3,
5, 1, 8, 7, 5, 4, 6, 6, 0, 2, 4, 2, 9, 5, 9, 8, 1, 4, 8, 1, 1, 6, 7, 5,
9, 1, 1, 7, 8, 7, 5, 5, 2, 6, 5, 8, 1, 0, 7, 2, 2, 4, 3, 9, 7, 3, 5, 7,
6, 9, 5, 9, 6, 5, 7, 2, 3, 7, 2, 9, 7, 4, 8, 4, 9, 3, 8, 7, 5, 0, 0, 3,
4, 3, 3, 6, 0, 1, 7, 7, 4, 6, 3, 0, 8, 0, 9, 8, 2, 4, 2, 9, 4, 9, 9, 9,
7, 7, 6, 8, 2, 4, 9, 3, 0, 4, 4, 1, 5, 7, 7, 6, 9, 7, 0, 2, 4, 2, 1, 4,
7, 4, 5, 1, 4, 7, 3, 1, 7, 6, 9, 0, 0, 7, 3, 6, 3, 3, 6, 5, 8, 1, 7, 1,
6, 1, 2, 3, 1, 6, 8, 8, 7, 4, 3, 7, 7, 1, 8, 9, 2, 6, 6, 6, 2, 8, 8, 1,
6, 0, 3, 0, 5, 1, 3, 2, 4, 1, 5, 5, 7, 3, 5, 6, 2, 1, 8, 0, 2, 0, 8, 4,
4, 5, 0, 0, 1, 5, 0, 7, 4, 0, 9, 2, 5, 7, 4, 0, 3, 7, 0, 3, 5, 1, 0, 6,
4, 7, 6, 4, 7, 0, 0, 5, 8, 2, 0, 6, 2, 4, 2, 3, 2, 7, 7, 6, 9, 8, 5, 9,
7, 1, 3, 4, 3, 1, 8, 0, 3, 0, 7, 4, 9, 0, 8, 1, 5, 7, 3, 2, 2, 0, 7, 3,
1, 8, 8, 2, 2, 6, 2, 7, 6, 6, 9, 4, 9, 3, 7, 0, 4, 6, 1, 9, 7, 4, 4, 5,
8, 2, 3, 2, 4, 9, 1, 9, 6, 7, 1, 2, 1, 1, 2, 6, 9, 7, 1, 0, 1, 4, 2, 7,
7, 8, 3, 2, 8, 2, 7, 6, 1, 1, 9, 1, 0, 9, 1, 3, 9, 3, 7, 6, 5, 6, 2, 0,
0, 3, 9, 4, 7, 3, 2, 9, 0, 9, 5, 2, 2, 4, 1, 6, 3, 4, 0, 1, 6, 9, 1, 7,
0, 8, 0, 0, 9, 8, 5, 9, 4, 4, 7, 1, 9, 0, 0, 2, 4, 3, 5, 0, 4, 0, 1, 0,
5, 8, 1, 8, 3, 3, 2, 1, 2, 6, 8, 2, 5, 3, 7, 9, 3, 6, 2, 2, 6, 2, 7, 7,
6, 1, 8, 0, 3, 5, 7, 5, 0, 8, 6, 7, 2, 4, 1, 4, 3, 7, 7, 2, 9, 3, 5, 5,
9, 4, 8, 7, 6, 7, 4, 9, 2, 7, 7, 1, 0, 7, 2, 8, 0, 3, 5, 4, 5, 1, 5, 7,
6, 7, 3, 5, 3, 4, 5, 3, 4, 3, 2, 3, 1, 7, 4, 4, 8, 5, 5, 3, 2, 2, 9, 5,
8, 2, 0, 6, 0, 7, 9, 9, 6, 1, 6, 6, 2, 3, 7, 4, 7, 5, 2, 9, 4, 2, 9, 0,
8, 1, 7, 5, 5, 7, 0, 5, 2, 9, 5, 2, 3, 4, 6, 0, 0, 2, 9, 2, 0, 5, 4, 8,
9, 0, 9, 1, 3, 4, 1, 8, 0, 0, 4, 0, 8, 5, 9, 8])
torch.Size([1000, 1, 28, 28])

可視化展示

# 畫圖 (前6個)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

輸出結果:

建立模型

# 創建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

訓練模型

# 訓練
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

輸出結果:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.297471
Train Epoch: 1 [6400/60000 (11%)] Loss: 1.934886
Train Epoch: 1 [12800/60000 (21%)] Loss: 1.242982
Train Epoch: 1 [19200/60000 (32%)] Loss: 0.979296
Train Epoch: 1 [25600/60000 (43%)] Loss: 1.277279
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.721533
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.759595
Train Epoch: 1 [44800/60000 (75%)] Loss: 0.469635
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.422614
Train Epoch: 1 [57600/60000 (96%)] Loss: 0.417603

Test set: Avg. loss: 0.1988, Accuracy: 9431/10000 (94%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.277207
Train Epoch: 2 [6400/60000 (11%)] Loss: 0.328862
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396312
Train Epoch: 2 [19200/60000 (32%)] Loss: 0.301772
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.253600
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.217821
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.395815
Train Epoch: 2 [44800/60000 (75%)] Loss: 0.265737
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.323627
Train Epoch: 2 [57600/60000 (96%)] Loss: 0.236692

Test set: Avg. loss: 0.1233, Accuracy: 9622/10000 (96%)

Train Epoch: 3 [0/60000 (0%)] Loss: 0.500148
Train Epoch: 3 [6400/60000 (11%)] Loss: 0.338118
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.452308
Train Epoch: 3 [19200/60000 (32%)] Loss: 0.374940
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.323300
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.203830
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.379557
Train Epoch: 3 [44800/60000 (75%)] Loss: 0.334822
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.361676
Train Epoch: 3 [57600/60000 (96%)] Loss: 0.218833

Test set: Avg. loss: 0.0911, Accuracy: 9723/10000 (97%)

完整代碼

import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 設置超參數
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 100
random_seed = 1
torch.manual_seed(random_seed)

# 數據讀取
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)

# 調試輸出
print(example_targets)
print(example_data.shape)

# 畫圖 (前6個)
fig = plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()


# 創建model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
                      momentum=momentum)

# 訓練
train_losses = []
train_counter = []
test_losses = []
test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)]


def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')


def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

到此這篇關于PyTorch一小時掌握之神經網絡分類篇的文章就介紹到這了,更多相關PyTorch神經網絡分類內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • PyTorch一小時掌握之autograd機制篇
  • PyTorch一小時掌握之神經網絡氣溫預測篇
  • PyTorch一小時掌握之圖像識別實戰篇
  • PyTorch一小時掌握之基本操作篇

標簽:蕪湖 廣西 蘭州 懷化 呂梁 吉安 安康 紹興

巨人網絡通訊聲明:本文標題《PyTorch一小時掌握之神經網絡分類篇》,本文關鍵詞  PyTorch,一小時,掌握,之,神經網絡,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《PyTorch一小時掌握之神經網絡分類篇》相關的同類信息!
  • 本頁收集關于PyTorch一小時掌握之神經網絡分類篇的相關信息資訊供網民參考!
  • 推薦文章
    校园春色亚洲色图_亚洲视频分类_中文字幕精品一区二区精品_麻豆一区区三区四区产品精品蜜桃
    欧美一级片免费看| 欧美一区二区三区思思人| 欧美午夜精品一区二区三区| 一区视频在线播放| 国产成人精品1024| 国产精品传媒入口麻豆| 色美美综合视频| 亚洲国产精品一区二区久久 | 国产精品久久免费看| 国产成人免费视频网站高清观看视频 | 成人高清免费在线播放| 亚洲欧美综合另类在线卡通| 色婷婷精品大在线视频| 极品少妇xxxx偷拍精品少妇| 国产日韩欧美一区二区三区乱码 | 丝袜诱惑制服诱惑色一区在线观看| 欧美一级电影网站| 成人免费视频网站在线观看| 亚洲精品伦理在线| 久久婷婷色综合| 欧美日韩综合一区| 懂色av噜噜一区二区三区av | 洋洋成人永久网站入口| 欧美草草影院在线视频| 色综合久久久久| 国产综合成人久久大片91| 亚洲最新在线观看| 国产精品色婷婷| 欧美变态tickle挠乳网站| 色欧美日韩亚洲| 国产精品1区二区.| 蜜桃久久久久久久| 亚洲成av人片在www色猫咪| 国产精品九色蝌蚪自拍| 精品久久99ma| 欧美日本在线视频| 99久久婷婷国产| 懂色av一区二区在线播放| 久久精品国产成人一区二区三区| ㊣最新国产の精品bt伙计久久| 26uuu精品一区二区| 这里只有精品99re| 欧美日韩亚洲另类| 欧美午夜精品理论片a级按摩| 成人黄色av电影| 成人网在线播放| 国产成人精品一区二区三区四区| 毛片一区二区三区| 美日韩一区二区| 久久精品国产第一区二区三区| 奇米影视一区二区三区小说| 日韩经典中文字幕一区| 视频在线观看一区| 亚洲va国产va欧美va观看| 亚洲自拍都市欧美小说| 亚洲综合一区二区三区| 亚洲一区影音先锋| 亚洲成a人片在线不卡一二三区| 亚洲成人免费影院| 婷婷国产v国产偷v亚洲高清| 天堂在线亚洲视频| 另类欧美日韩国产在线| 久久99精品久久久久久久久久久久| 日韩不卡一二三区| 韩国成人精品a∨在线观看| 国产综合一区二区| 成人性生交大片免费| 99re热视频精品| 欧美日韩一级视频| 日韩欧美国产三级电影视频| 欧美岛国在线观看| 久久精品亚洲一区二区三区浴池| 欧美国产精品v| 亚洲美女区一区| 日本在线观看不卡视频| 国产一区二区视频在线| 成人激情动漫在线观看| 欧美性感一区二区三区| 精品少妇一区二区| 国产精品久久久久久久久晋中| 亚洲黄一区二区三区| 日本伊人色综合网| 成人免费精品视频| 欧美日韩综合在线| 国产精品视频一二三区| 亚洲午夜av在线| 国产精品资源在线看| 91丨porny丨国产入口| 欧美日韩久久一区| 欧美激情一区二区三区全黄| 亚洲一区二区在线视频| 国产成人精品一区二区三区四区| 色久优优欧美色久优优| 久久久久久久精| 亚洲一区二区三区视频在线播放 | 日本美女视频一区二区| 国产不卡在线一区| 在线播放91灌醉迷j高跟美女| 国产亚洲制服色| 亚洲第四色夜色| 不卡大黄网站免费看| 欧美va亚洲va香蕉在线| 亚洲一区二区综合| 不卡一二三区首页| 26uuu色噜噜精品一区| 亚洲高清三级视频| 99精品一区二区| 久久精品欧美一区二区三区麻豆| 亚洲va韩国va欧美va精品 | 岛国一区二区三区| 日韩精品影音先锋| 午夜在线电影亚洲一区| 99视频在线观看一区三区| 日韩精品专区在线影院观看| 亚洲.国产.中文慕字在线| 色哟哟一区二区三区| 欧美激情一区不卡| 国产呦精品一区二区三区网站| 欧美精品自拍偷拍| 天天综合日日夜夜精品| 91久久精品一区二区| 自拍偷自拍亚洲精品播放| 粉嫩aⅴ一区二区三区四区| 欧美精品一区二区三区在线| 日本欧美大码aⅴ在线播放| 欧美精品第1页| 亚洲va国产天堂va久久en| 欧美日韩在线播放三区四区| 亚洲综合久久久| 99久久精品99国产精品| 中文字幕制服丝袜一区二区三区| 国产麻豆精品在线| 精品国产91洋老外米糕| 狠狠色狠狠色综合系列| 亚洲精品在线观看网站| 国产专区综合网| 国产三级三级三级精品8ⅰ区| 国产精品一区二区三区乱码| 国产日韩精品一区二区浪潮av| 韩国av一区二区三区| 国产亚洲视频系列| 92精品国产成人观看免费| 亚洲猫色日本管| 欧美日韩不卡视频| 日日夜夜一区二区| xvideos.蜜桃一区二区| 成人性生交大片免费看中文| 亚洲精品视频在线| 欧美绝品在线观看成人午夜影视| 舔着乳尖日韩一区| 国产丝袜在线精品| 91麻豆视频网站| 日本女人一区二区三区| 日本一区二区成人| 欧洲精品在线观看| 六月丁香婷婷色狠狠久久| 中日韩av电影| 欧美日韩国产乱码电影| 韩国v欧美v亚洲v日本v| 亚洲欧洲国产日本综合| 欧美日韩在线三级| 国产v综合v亚洲欧| 亚洲国产精品一区二区久久| 久久这里只有精品6| 一本大道av伊人久久综合| 免费看黄色91| 国产精品国产自产拍高清av| 宅男噜噜噜66一区二区66| 国产精品2024| 日韩精品电影在线| 成人免费一区二区三区视频| 91麻豆精品国产无毒不卡在线观看 | 91蜜桃免费观看视频| 日韩av在线播放中文字幕| 欧美国产日韩在线观看| 欧美精品一二三四| 99麻豆久久久国产精品免费 | 欧美日韩国产高清一区二区 | 在线日韩国产精品| 国产成人av自拍| 青娱乐精品视频在线| 亚洲美女视频一区| 国产欧美精品一区| 91麻豆精品国产91久久久久久久久| 成人免费看的视频| 激情久久久久久久久久久久久久久久| 亚洲黄色av一区| 久久久精品人体av艺术| 欧美一区二区美女| 欧美日韩中文国产| 色噜噜久久综合| av综合在线播放| 国产91丝袜在线播放| 久久精品国产网站| 蜜乳av一区二区| 日本va欧美va瓶| 婷婷夜色潮精品综合在线| 亚洲专区一二三| 一区二区三区在线观看网站| 国产精品美女久久久久av爽李琼 |