校园春色亚洲色图_亚洲视频分类_中文字幕精品一区二区精品_麻豆一区区三区四区产品精品蜜桃

主頁 > 知識庫 > 關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解

關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解

熱門標(biāo)簽:廈門crm外呼系統(tǒng)如何 西藏快速地圖標(biāo)注地點(diǎn) 如何在地圖標(biāo)注文字 百應(yīng)ai電銷機(jī)器人鄭州 n400電話申請多少錢 長春人工智能電銷機(jī)器人官網(wǎng) 地圖標(biāo)注推廣單頁 ai地圖標(biāo)注 女王谷地圖標(biāo)注

Plotly Express是對 Plotly.py 的高級封裝,內(nèi)置了大量實(shí)用、現(xiàn)代的繪圖模板,用戶只需調(diào)用簡單的API函數(shù),即可快速生成漂亮的互動(dòng)圖表,可滿足90%以上的應(yīng)用場景。

本文借助Plotly Express提供的幾個(gè)樣例庫進(jìn)行散點(diǎn)圖、折線圖、餅圖、柱狀圖、氣泡圖、桑基圖、玫瑰環(huán)圖、堆積圖、二維面積圖、甘特圖等基本圖形的實(shí)現(xiàn)。

代碼示例

import plotly.express as px
df = px.data.iris()
#Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species','species_id'],dtype='object')
#   sepal_length sepal_width ...  species species_id
# 0       5.1     3.5 ...   setosa      1
# 1       4.9     3.0 ...   setosa      1
# 2       4.7     3.2 ...   setosa      1
# ..      ...     ... ...    ...     ...
# 149      5.9     3.0 ... virginica      3
# plotly.express.scatter(data_frame=None, x=None, y=None, 
# color=None, symbol=None, size=None,
# hover_name=None, hover_data=None, custom_data=None, text=None,
# facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None,
# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,
# animation_frame=None, animation_group=None,
# category_orders=None, labels=None, orientation=None,
# color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, 
# range_color=None, color_continuous_midpoint=None,
# symbol_sequence=None, symbol_map=None, opacity=None, 
# size_max=None, marginal_x=None, marginal_y=None,
# trendline=None, trendline_color_override=None, 
# log_x=False, log_y=False, range_x=None, range_y=None,
# render_mode='auto', title=None, template=None, width=None, height=None)
# 以sepal_width,sepal_length制作標(biāo)準(zhǔn)散點(diǎn)圖
fig = px.scatter(df, x="sepal_width", y="sepal_length")
fig.show()
 
 
#以鳶尾花類型-species作為不同顏色區(qū)分標(biāo)志 color
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()
 
#追加petal_length作為散點(diǎn)大小,變位氣泡圖 size
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         color="species",size='petal_length')
fig.show()
 
#追加petal_width作為額外列,在懸停工具提示中顯示為額外數(shù)據(jù) hover_data
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         color="species", size='petal_length',
         hover_data=['petal_width'])
fig.show()
 
#以鳶尾花類型-species區(qū)分散點(diǎn)的形狀 symbol
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", 
         size='petal_length',
         hover_data=['petal_width'])
fig.show()
 
#追加petal_width作為額外列,在懸停工具提示中以粗體顯示。 hover_name
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", 
         size='petal_length',
         hover_data=['petal_width'], hover_name="species")
fig.show()
 
#以鳶尾花類型編碼-species_id作為散點(diǎn)的文本值 text
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", 
         size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id")
fig.show()
 
#追加圖表標(biāo)題 title
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鳶尾花分類展示")
fig.show()
 
#以鳶尾花類型-species作為動(dòng)畫播放模式 animation_frame
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鳶尾花分類展示",
         animation_frame="species")
fig.show()
 
#固定X、Y最大值最小值范圍range_x,range_y,防止動(dòng)畫播放時(shí)超出數(shù)值顯示
fig = px.scatter(df, x="sepal_width", y="sepal_length",
         symbol="species" ,color="species", size='petal_length',
         hover_data=['petal_width'], hover_name="species",
         text="species_id",title="鳶尾花分類展示",
         animation_frame="species",range_x=[1.5,4.5],range_y=[4,8.5])
fig.show()
 
df = px.data.gapminder().query("country=='China'")
# Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap', 'iso_alpha', 'iso_num'],dtype='object')
#   country continent year ...  gdpPercap iso_alpha iso_num
# 288  China   Asia 1952 ...  400.448611    CHN   156
# 289  China   Asia 1957 ...  575.987001    CHN   156
# 290  China   Asia 1962 ...  487.674018    CHN   156
# plotly.express.line(data_frame=None, x=None, y=None, 
# line_group=None, color=None, line_dash=None,
# hover_name=None, hover_data=None, custom_data=None, text=None,
# facet_row=None, facet_col=None, facet_col_wrap=0, 
# facet_row_spacing=None, facet_col_spacing=None,
# error_x=None, error_x_minus=None, error_y=None, error_y_minus=None,
# animation_frame=None, animation_group=None,
# category_orders=None, labels=None, orientation=None,
# color_discrete_sequence=None, color_discrete_map=None,
# line_dash_sequence=None, line_dash_map=None,
# log_x=False, log_y=False,
# range_x=None, range_y=None,
# line_shape=None, render_mode='auto', title=None, 
# template=None, width=None, height=None)
# 顯示中國的人均壽命
fig = px.line(df, x="year", y="lifeExp", title='中國人均壽命')
fig.show()
 
# 以不同顏色顯示亞洲各國的人均壽命
df = px.data.gapminder().query("continent == 'Asia'")
fig = px.line(df, x="year", y="lifeExp", color="country", 
       hover_name="country")
fig.show()
 
# line_group="country" 達(dá)到按國家去重的目的
df = px.data.gapminder().query("continent != 'Asia'") # remove Asia for visibility
fig = px.line(df, x="year", y="lifeExp", color="continent",
       line_group="country", hover_name="country")
fig.show()
 
# bar圖
df = px.data.gapminder().query("country == 'China'")
fig = px.bar(df, x='year', y='lifeExp')
fig.show()
 
df = px.data.gapminder().query("continent == 'Asia'")
fig = px.bar(df, x='year', y='lifeExp',color="country" )
fig.show()
 
df = px.data.gapminder().query("country == 'China'")
fig = px.bar(df, x='year', y='pop',
       hover_data=['lifeExp', 'gdpPercap'], color='lifeExp',
       labels={'pop':'population of China'}, height=400)
fig.show()
 
fig = px.bar(df, x='year', y='pop',
       hover_data=['lifeExp', 'gdpPercap'], color='pop',
       labels={'pop':'population of China'}, height=400)
fig.show()
 
df = px.data.medals_long()
# #     nation  medal count
# # 0 South Korea  gold   24
# # 1    China  gold   10
# # 2    Canada  gold   9
# # 3 South Korea silver   13
# # 4    China silver   15
# # 5    Canada silver   12
# # 6 South Korea bronze   11
# # 7    China bronze   8
# # 8    Canada bronze   12
fig = px.bar(df, x="nation", y="count", color="medal", 
       title="Long-Form Input")
fig.show()
 
# 氣泡圖
df = px.data.gapminder()
# X軸以對數(shù)形式展現(xiàn)
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp",
         size="pop",
         color="continent",hover_name="country", 
         log_x=True, size_max=60)
fig.show()
 
# X軸以標(biāo)準(zhǔn)形式展現(xiàn)
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp",
         size="pop",
         color="continent",hover_name="country", 
         log_x=False, size_max=60)
fig.show()
 
# 餅狀圖
px.data.gapminder().query("year == 2007").groupby('continent').count()
#      country year lifeExp pop gdpPercap iso_alpha iso_num
# continent
# Africa     52  52    52  52     52     52    52
# Americas    25  25    25  25     25     25    25
# Asia      33  33    33  33     33     33    33
# Europe     30  30    30  30     30     30    30
# Oceania     2   2    2  2     2     2    2
df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
fig = px.pie(df, values='pop', names='country',
       title='Population of European continent')
fig.show()
 
df.loc[df['pop']  10000000, 'country'] = 'Other countries'
fig = px.pie(df, values='pop', names='country', 
       title='Population of European continent',
       hover_name='country',labels='country')
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.show()
 
df.loc[df['pop']  10000000, 'country'] = 'Other countries'
fig = px.pie(df, values='pop', names='country', 
       title='Population of European continent',
       hover_name='country',labels='country', 
       color_discrete_sequence=px.colors.sequential.Blues)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.show()
 
# 二維面積圖
df = px.data.gapminder()
fig = px.area(df, x="year", y="pop", color="continent", 
       line_group="country")
fig.show()
 
fig = px.area(df, x="year", y="pop", color="continent", 
       line_group="country",
       color_discrete_sequence=px.colors.sequential.Blues)
fig.show()
 
df = px.data.gapminder().query("year == 2007")
fig = px.bar(df, x="pop", y="continent", orientation='h',
       hover_name='country',
       text='country',color='continent')
fig.show()
 
# 甘特圖
import pandas as pd
df = pd.DataFrame([
  dict(Task="Job A", Start='2009-01-01', Finish='2009-02-28', 
     Completion_pct=50, Resource="Alex"),
  dict(Task="Job B", Start='2009-03-05', Finish='2009-04-15',
     Completion_pct=25, Resource="Alex"),
  dict(Task="Job C", Start='2009-02-20', Finish='2009-05-30', 
     Completion_pct=75, Resource="Max")
])
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", 
         color="Completion_pct")
fig.update_yaxes(autorange="reversed")
fig.show()
 
fig = px.timeline(df, x_start="Start", x_end="Finish", y="Resource", 
         color="Resource")
fig.update_yaxes(autorange="reversed")
fig.show()
 
# 玫瑰環(huán)圖
df = px.data.tips()
#   total_bill  tip   sex smoker  day  time size
# 0     16.99 1.01 Female   No  Sun Dinner   2
# 1     10.34 1.66  Male   No  Sun Dinner   3
# 2     21.01 3.50  Male   No  Sun Dinner   3
# 3     23.68 3.31  Male   No  Sun Dinner   2
# 4     24.59 3.61 Female   No  Sun Dinner   4
fig = px.sunburst(df, path=['day', 'time', 'sex'], 
         values='total_bill')
fig.show()
 
import numpy as np
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'], 
         values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'], 
                            weights=df['pop']))
fig.show()
 
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'], 
         values='pop',
         color='pop', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()
 
# treemap圖
import numpy as np
df = px.data.gapminder().query("year == 2007")
df["world"] = "world" # in order to have a single root node
fig = px.treemap(df, path=['world', 'continent', 'country'], 
         values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'], 
                            weights=df['pop']))
fig.show()
 
fig = px.treemap(df, path=['world', 'continent', 'country'], values='pop',
         color='pop', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu',
         color_continuous_midpoint=np.average(df['lifeExp'], 
                            weights=df['pop']))
fig.show()
 
fig = px.treemap(df, path=['world', 'continent', 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()
 
fig = px.treemap(df, path=[ 'continent', 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()
 
fig = px.treemap(df, path=[ 'country'], values='pop',
         color='lifeExp', hover_data=['iso_alpha'],
         color_continuous_scale='RdBu')
fig.show()
 
# 桑基圖
tips = px.data.tips()
fig = px.parallel_categories(tips, color="size",
               color_continuous_scale=px.colors.sequential.Inferno)
fig.show()

到此這篇關(guān)于關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解的文章就介紹到這了,更多相關(guān)Python plotly基本圖形內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 分享8個(gè)非常流行的 Python 可視化工具包
  • python可視化 matplotlib畫圖使用colorbar工具自定義顏色
  • Python可視化工具如何實(shí)現(xiàn)動(dòng)態(tài)圖表
  • 詳解python實(shí)現(xiàn)可視化的MD5、sha256哈希加密小工具
  • 基于python實(shí)現(xiàn)可視化生成二維碼工具
  • 這3個(gè)Python實(shí)時(shí)可視化工具包來幫你了解性能瓶頸

標(biāo)簽:綿陽 拉薩 興安盟 渭南 內(nèi)江 黔東 廊坊 亳州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解》,本文關(guān)鍵詞  關(guān)于,Python,可視化,Dash,工具,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解》相關(guān)的同類信息!
  • 本頁收集關(guān)于關(guān)于Python可視化Dash工具之plotly基本圖形示例詳解的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    校园春色亚洲色图_亚洲视频分类_中文字幕精品一区二区精品_麻豆一区区三区四区产品精品蜜桃
    国产精品国产三级国产aⅴ入口| 51精品秘密在线观看| 91福利资源站| 亚洲观看高清完整版在线观看| 色综合久久综合| 亚洲视频一区二区在线观看| 色婷婷综合久久久久中文一区二区| 亚洲黄网站在线观看| 欧美日韩一区二区电影| 日本va欧美va欧美va精品| 久久综合色综合88| 91在线视频播放地址| 亚洲国产精品影院| 国产嫩草影院久久久久| 欧美三级欧美一级| 国产成人综合网站| 亚洲国产精品久久久久婷婷884 | 精品一区二区日韩| 中文字幕精品一区二区精品绿巨人 | 国产精品一区二区黑丝| 亚洲精品成a人| 精品国产伦一区二区三区观看体验 | 免费国产亚洲视频| 亚洲图片激情小说| 精品日韩成人av| 欧美日韩成人在线一区| 国产99久久久精品| 久久电影网电视剧免费观看| 亚洲日本在线a| 久久精品欧美日韩精品| 欧美精品自拍偷拍动漫精品| 成人污视频在线观看| 精品一区二区三区视频| 日产欧产美韩系列久久99| 最新日韩av在线| 国产欧美一区二区三区鸳鸯浴| 777奇米四色成人影色区| 91免费看`日韩一区二区| 国产一区二区不卡在线| 日本在线观看不卡视频| 亚洲777理论| 亚洲福利一二三区| 亚洲另类春色校园小说| 综合在线观看色| 国产精品久久久久久久久免费丝袜 | 欧美色手机在线观看| 91在线观看地址| 99re热视频精品| www.欧美日韩国产在线| 国产精品1区2区| 国产成人精品亚洲午夜麻豆| 国产精品自在欧美一区| 国产激情91久久精品导航| 极品少妇xxxx偷拍精品少妇| 蜜臀av一区二区| 国产真实乱子伦精品视频| 精品一区二区av| 国产 日韩 欧美大片| 成人污视频在线观看| 日本道在线观看一区二区| 欧美在线三级电影| 91精品久久久久久蜜臀| 欧美电影免费观看高清完整版在线| 欧美一级在线视频| 久久久久久久久久久黄色| 国产欧美精品一区二区三区四区| 中文字幕欧美激情一区| 亚洲欧美激情小说另类| 亚洲图片欧美色图| 麻豆91精品91久久久的内涵| 国产一区二区三区香蕉| 91在线码无精品| 制服.丝袜.亚洲.中文.综合| 精品国产髙清在线看国产毛片| 国产网站一区二区三区| 亚洲综合激情网| 男男成人高潮片免费网站| 国产在线播放一区二区三区| 成人免费视频国产在线观看| 色成年激情久久综合| 日韩一区二区三区免费看| 久久精品网站免费观看| 亚洲综合色噜噜狠狠| 久久精品国产网站| 白白色亚洲国产精品| 欧美精品久久久久久久久老牛影院| 精品国产一区二区三区四区四| 中文字幕乱码久久午夜不卡| 亚洲一二三四久久| 国产成人亚洲综合a∨婷婷| 欧洲人成人精品| 久久久久久综合| 香蕉久久夜色精品国产使用方法 | 国产美女视频91| 在线观看视频一区| www日韩大片| 亚洲国产精品嫩草影院| 成人晚上爱看视频| 精品久久久久久无| 亚洲国产乱码最新视频 | 奇米亚洲午夜久久精品| 成人免费黄色在线| 日韩欧美国产一区二区在线播放 | 美脚の诱脚舐め脚责91| 色婷婷香蕉在线一区二区| 久久亚洲一区二区三区明星换脸| 一区二区三区在线高清| 国产suv一区二区三区88区| 欧美一二三区在线| 亚洲在线一区二区三区| 国产成人亚洲综合a∨婷婷| 欧美一激情一区二区三区| 亚洲一区二区三区四区在线免费观看| 国产真实乱对白精彩久久| 欧美一卡二卡在线| 丝袜a∨在线一区二区三区不卡| 99久久国产综合色|国产精品| 精品88久久久久88久久久| 天天操天天色综合| 欧美精品在线一区二区三区| 一个色妞综合视频在线观看| 99在线精品一区二区三区| 国产农村妇女毛片精品久久麻豆| 久久99精品久久久久久国产越南| 欧美精品自拍偷拍动漫精品| 五月婷婷久久综合| 欧美日韩精品欧美日韩精品| 一个色在线综合| 欧美人与性动xxxx| 日韩国产欧美一区二区三区| 91麻豆精品久久久久蜜臀 | 久久综合九色综合欧美就去吻| 欧美aaaaaa午夜精品| 日韩精品一区二区三区四区| 日韩激情中文字幕| 欧美一级黄色录像| 国产在线播放一区| 欧美国产国产综合| 91亚洲国产成人精品一区二三| 亚洲欧美激情小说另类| 欧美色精品在线视频| 日本人妖一区二区| 精品久久国产老人久久综合| 精品一区二区免费在线观看| 欧美国产精品一区| 欧美午夜精品一区| 麻豆极品一区二区三区| 久久久久久97三级| 日本久久精品电影| 午夜久久久久久久久久一区二区| 欧美一区二区三区精品| 国产精品羞羞答答xxdd| 亚洲激情欧美激情| 欧美大片一区二区| av男人天堂一区| 日韩av电影天堂| 国产精品你懂的| 欧美三级视频在线播放| 韩国女主播一区| 亚洲激情中文1区| 26uuu精品一区二区三区四区在线| caoporn国产一区二区| 婷婷亚洲久悠悠色悠在线播放| 久久久久久麻豆| 欧美日韩中字一区| 粉嫩欧美一区二区三区高清影视| 夜夜嗨av一区二区三区中文字幕| 精品日韩av一区二区| 日本乱人伦一区| 国产成a人亚洲精| 亚洲精品一二三四区| 久久久精品综合| 91麻豆精品国产综合久久久久久| 成人黄色片在线观看| 青青草成人在线观看| 亚洲一区二区三区视频在线| 国产网红主播福利一区二区| 欧美一级欧美三级在线观看| 色又黄又爽网站www久久| 国产精品影音先锋| 麻豆精品一区二区三区| 亚洲精品福利视频网站| 国产精品美女久久久久久久久久久| 欧美日韩电影一区| 色一情一乱一乱一91av| 成人免费高清在线| 国产福利不卡视频| 极品少妇xxxx精品少妇| 奇米精品一区二区三区在线观看 | 久久超碰97人人做人人爱| 亚洲精品老司机| 国产精品久久久久毛片软件| 国产亚洲午夜高清国产拍精品| 欧美一区二区三区视频在线观看| 91黄色激情网站| 91在线精品一区二区| 成人精品一区二区三区中文字幕| 国产原创一区二区| 韩国精品在线观看| 精品一区二区精品|